

Consolidated Financial Result Briefing for the six months ended September 30, 2025

CYBERDYNE, Inc. Nov 13, 2025

Consolidated financial statements

1H FY2025 - Consolidated Results Summary (IFRS)

Following 1Q, consolidated revenue decreased due to the impact of the sales of a subsidiary in the previous fiscal year, while operating profit improved Profit before tax and profit attributable to owners of parent remained positive, mainly due to gains on valuation of investment securities

(Millions of yen)	2024/1H	2025/1H	YoY	%
Revenue	2,143	1,963	-179	-8.4%
Operating profit (loss)	(497)	(174)	+323	-
Profit (loss) before tax	(215)	297	+512	-
Profit (loss) attributable to owners of parent	(305)	70	+375	-
owners of parent			• EMEA product rentals: +107 million ven (husiness	1400 million van farav 4 million van

Revenue

1,963 Million YoY -179 Million (-8.4%)

- EMEA product rentals: +107 million yen (business +108 million yen, forex –1 million yen)
- · Domestic & APAC product rentals, etc.: +90 million yen (business +107 million yen, forex -16 million yen)
- · Treatment services: -124 million yen (business -88 million yen, forex -37 million yen)
- New business expansion: LeyLine –220 million yen, domestic –32 million yen

Operating profit (loss)

-174 Million YoY +323 Million

- EMEA product rentals: +78 million yen (business +79 million yen, forex -1 million yen)
- · Domestic & APAC product rentals, etc.: +84 million yen (business +94 million yen, forex -10 million yen)
- · Treatment services: +17 million yen (business +14 million yen, forex +2 million yen)
- · New business expansion: LeyLine +153 million yen, domestic +23 million yen
- R&D and head office expenses, etc.: –31 million yen

Profit (loss) before tax

297 Million YoY +512 Million

- · Operating profit variance: +323 million yen
- Gain on valuation of investment securities: +178 million yen (FY2025 1H: +482 million yen vs. FY2024 1H: +305 million yen)
- Finance costs -89 million yen (FY2025 1H: -261 million yen vs. FY2024 1H: -173 million yen)
 FY2025: Provision for doubtful accounts for LeyLine 252 million yen
- · Others (Gains related to CEJ Fund, etc.): +11 million yen

Consolidated results: Revenue / Operating profit (Margin)

Product rentals and related services recorded year-on-year increases in both revenue and profit, driven by continued expansion in EMEA, APAC, and Japan

Treatment services recorded a decrease in revenue but an increase in profit, reflecting improved profitability at RHG in the U.S.

New business expansion recorded a decrease in revenue but an increase in profit, mainly due to the impact of the LeyLine sale in the previous fiscal year

(Millions of yen)		2024/1H	2025/1H	YoY	%
Product rental	Revenue Operating Profit (Margin %)	832 333 (40%)	1,030 495 (48%)	+198 +162 (+8pt)	+24% +49%
Treatment service	Revenue Operating Profit (Margin %)	946 -62 (-7%)	822 -46 (-6%)	-124 +16 (+1pt)	-13% -
New business expansion	Revenue Operating Profit (Margin %)	365 -170 (-47%)	112 6 (6%)	-253 +176 (+53pt)	-69% -
R&D expenses & Head office expenses	Adjusted amount	-598	-630	-32	-
Consolidated total (IFRS)	rtevenue		1,963 -174 (-9%)	-179 +323 (+14pt)	-8% -

[·] Amount of operating profit or loss, which is revenue minus operating expenses, for each business

[·] Adjustment amount of R&D expenses, head office administrative expenses, other income and expenses, etc.

[•] Product rental : Revenue from rental of the Group's products (includes revenue from sales)

[•] Treatment service: Revenue from treatment services provided through the Group's facilities (including service fees in Robocare Centers)

[·] New business expansion: Revenue from the Group's new business (e.g. subsidiary in Mobility and Sleeping App)

Revenue from rental and sales (by product)

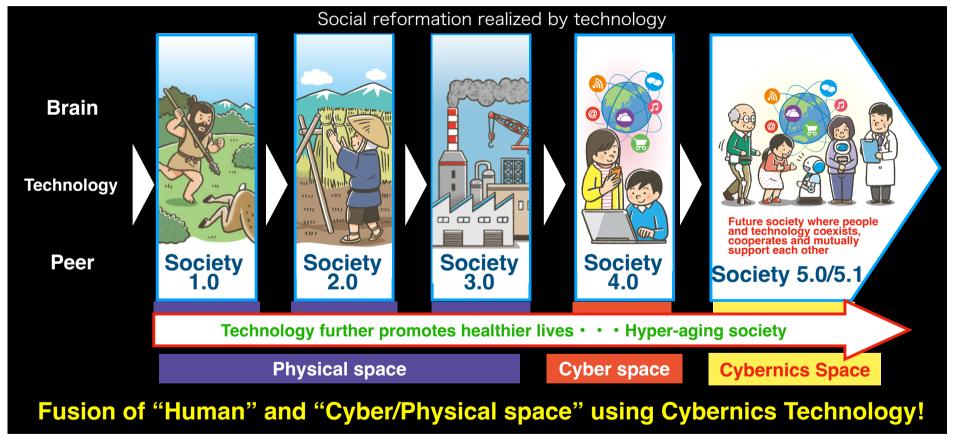
(Millions of yen) 2025/1H (2024/1H)	Japan	EMEA	APAC	AMER	Total	YoY
Product rental	488 (456)	245 (137)	277 (220)	20 (19)	1,030 (832)	+198 (+24%)
Treatment Service	62 (63)	33 (21)	-	726 (862)	822 (946)	-124 (-13%)
New business Expansion	112 (144)	- (220)	-	-	112 (365)	-253 (-69%)
Total	662 (663)	278 (379)	277 (220)	746 (880)	1,963 (2,143)	-179 (-8%)
YoY	-1 (-0%)	-101 (-27%)	+57 (+26%)	-136 (-15%)		
	Domestic		Foreign			
Sales Revenue ratio	34%		66%		100%	

EMEA :Europe, the Middle East and Africa APAC : Asia-Pacific *Excluding Japan AMER : North, Central and South America

Revenue from rental and sales (by product)

Domestic sales remained solid, supported by new installations of the Medical HAL Lower Limb Type and mobile robot Overseas sales also remained strong, mainly in EMEA (primarily Germany) and APAC (primarily Malaysia).

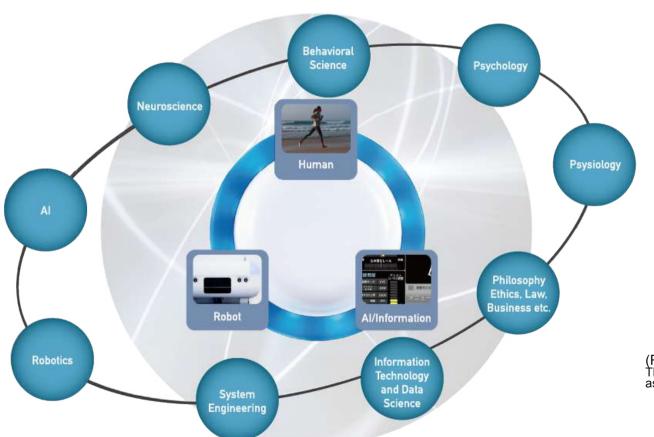
(Millions of yen) 2025/1H (2024/1H)	Type of product	In Japan	Outside Japan	Total
Cybernics Treatment Functional improvement and regeneration	Medical HAL Lower Limb Type	210 (183)	385 (268)	595 (450)
	Non-medical HAL Lower Limb Type	76 (80)	-	76 (80)
	HAL Single Joint Type	48 (44)	75 (52)	123 (96)
Well-being and care	HAL Lumbar Type	40 (51)	58 (43)	98 (95)
Labor Support	HAL Lumbar Type	18 (19)	-	18 (19)
	Mobile robot (CL02 etc.)	51 (39)	-	51 (39)
Other (Acoustic X、Other products)		45 (41)	24 (13)	69 (54)
	Total	488 (456)	542 (376)	1,030 (832)


Business Policy and Initiatives for Business Growth

Realization of "Techno-peer Support Society"

A future society where people and technology coexists, cooperates and mutually support each other

For wide variety of people faced with health, physical function, cognitive and psychological problems
A safe and secure society (well-being society) where people of all generations can increase their independence, freedom and solve various problems in their lives



→ Create "Cybernics Industry", a new industry that follows Robot and IT Industry

Cybernics Technology: Innovative core technology of Cybernics Industry

Cybernics: Fuses and combines humans, Al-Robots and Information Systems

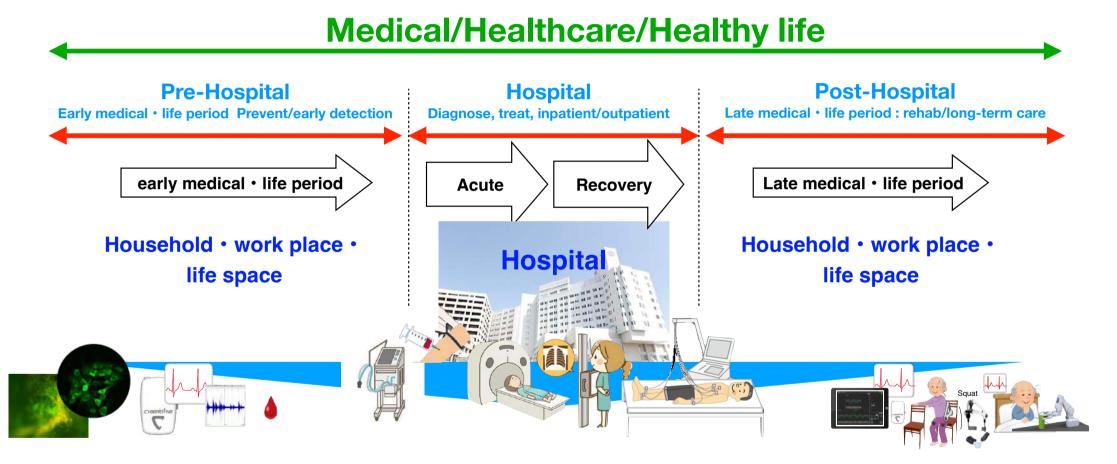
*Cybernics: Science and technology in cutting-edge areas that combine different fields such as brain/neuroscience, physiology, artificial intelligence (AI), robotics, information technology (IT), psychology, economy and innovation with a focus on Human, AI-robots and Information Systems to realize the fusion of bio/medical technologies and AI, robotics and information technologies.

(Reference)
The Cabinet Office's FIRST, ImPACT, and SIP programs address Cybernics as pioneering cutting-edge innovative science and technology areas

Business development centered on Cybernics medical health and life innovation in the integrated space of "Human" + "Cyber/Physical Space"

Towards the 5th Industrial Revolutions! "Human"+"Cyber/Physical Space"

HCPS Fusion Technology Cybernics Industry


that will follow Robot and IT Industry

Future of medical healthcare and healthy life Prevention/early detection, medicine, rehabilitation/long-term care

Close coordination, fusion between medical and non-medical field to evolve into comprehensive initiatives

Wearable cyborg HAL®

HAL® identified as the only device that induces neuroplasticity and provides comprehensive therapeutic effects — published in an international medical journal (comparison with passively controlled exoskeleton-type devices)

Review Article

Actively Controlled Exoskeletons Show Improved Function and Neuroplasticity Compared to Passive Control: A Systematic Review

Global Spine Journal 2025, Vol. 15(8) 3933–3952 © The Author(s) 2025 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/21925682251343529 journals.asgepub.com/home/gsj

Ka loi Argu James Gedd and Darren A systematic review analyzed 27 clinical studies selected from 555 publications released over a 12-year period, providing one of the highest levels of scientific evidence.

Abstract

Study Design: Systematic Review.

Objectives: To determine whether actively controlled exoskeletons or passively controlled exoskeletons are better at rehabilitating patients with SCIs.

Methods: A literature search between January 2011 to June 2023 on Pubmed Central, Pubmed, Web of Science and Embase was carried out. Exoskeletons were classified as actively controlled if they detect bioelectrical signals (HAL). All other exoskeletons were classified as passively controlled (ReWalk, Ekso, H-MEX, Atlante, Indego, Rex Bionics, SuitX Phoenix, Lokomat and HANK). Functional outcomes used were 6 minute walk test (6MWT) distance and 10 metre walk test (10MWT) speed. Further subgroup analysis was carried out for acute and chronic SCI patients. All outcomes were examined without the aid of the exoskeleton device. Secondary outcomes including continence, pain and quality of life were also examined.

Results: 555 articles were identified in the initial search and 27 were included in the review resulting in a total of 591 patients and 10 different exoskeleton models. HAL was the only exoskeleton to show improvements in both mobility and all secondary health outcomes. HANK and Ekso also showed improvements in mobility. Rewalk showed improvements in all secondary health outcomes with Ekso only showing improvements in QoL. No other exoskeletons showed significant improvements. Conclusion: In conclusion, the actively controlled exoskeleton HAL showed improvement in all outcomes of interest suggesting that neuroplasticity could be induced with HAL rehabilitation allowing the weakened bioelectrical signals to transcend the SCI to show genuine improvements.

In this review, HAL® was compared with nine other passively controlled exoskeleton-type devices (devices that repeatedly perform movements through robotic control). The results clearly demonstrated that only HAL® induces neuroplasticity and provides comprehensive therapeutic effects across multiple health outcomes associated with spinal cord injury (SCI).

The paper discusses that the repetitive neuromuscular process established between the central and peripheral nervous systems—made possible by HAL®'s core principles—facilitates the learning and reinforcement of neural signaling in the brain and spinal cord. This process ultimately leads to the reconstruction and reactivation of spinal circuits below the site of spinal cord injury and the partial reinnervation of neural pathways.

Through this mechanism of inducing neuroplasticity, HAL® demonstrated consistent improvements not only in primary mobility functions such as walking ability but also in secondary health indicators, including urinary and bowel function (continence), pain reduction, and overall quality of life (QoL).

Wearable cyborg HAL®

HAL Elicits Neuroplasticity in the Brain

Cerebral evidence supports that HAL® directly engages the user's central nervous system

232

IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 33, 2025

Cerebral Correlates of Robot-Assisted Upper Limb Motion Driven by Motor Intention in Healthy Individuals: An fNIRS Study

Margaux Noémie Lafitte[®], Christina Sylvia Andrea, Hideki Kadone[®], Eiichi Hoshino, Masashi Yamazaki, Yasuyo Minagawa, and Kenji Suzuki[®]. Senior Member, IEEE

Abstract- The past few years have seen an exponential growth of the robot-assisted rehabilitation field and new technological developments allowing the integration of the user's intention through detection of physiological information. The inclusion of motor intention is thought to be promising for motor rehabilitation and to facilitate neuroplasticity potentially by stimulating the cortical circuitry more than, or at least differently from, non-voluntary passive motion. Yet, contrasting results are reported in the literature. We aimed here to investigate the importance of the integration of motor intention on cortical activity using functional near-infrared spectroscopy (fNIRS) by comparing the active use of an assistive exoskeleton targeting the shoulder with passive use and unassisted motion. We recorded the activity of the bilateral frontal and parietal cortices of 20 healthy individuals during an arm raising task. Active robot assistance showed similar activity patterns to unassisted motion with the exception of a greater activation of the prefrontal region. Correlates of intention could be confirmed by an activation of the supplementary motor area in active-assisted and unassisted but not passive condition. Activation of the contralateral primary sensorimotor regions did not differ between passive and active conditions but activity of the ipsilateral hemisphere and secondary regions was reduced during

passive motion. Our results provide arguments in favor of the integration of the user's intention through physiological signals for rehabilitation, in favor of the investigation of secondary and ipsilateral regions, and in favor of the use of NIRS to investigate differences in cortical correlates of passive and active motion.

Index Terms—Cortical activity, functional near-infrared spectroscopy (fNIRS), robot-assisted rehabilitation, shoulder motion, voluntary intention.

I. INTRODUCTION

In THE past few years, the field of robot-assisted rehabilitation has seen exponential growth owing to technical improvements and the publication of promising results. It presents several advantages compared to typical rehabilitation approaches: it reduces the burden on therapists, offers high repeatability, repetition, and intensity, and it is thought to be more compelling for patients [1], [2], [3]. A subclass of the field is active assistance, which incorporates the intention of the patient, allowing voluntary training. If different control methods and ways to integrate the user's intention have been proposed (among which force sensors, position sensors, locatered and the patient patient integrated.

Brain activity during upper-limb motion with the wearable cyborg HAL® was visualized and quantified using functional near-infrared spectroscopy (fNIRS).

This study confirmed that, during motion assisted by HAL®, higher-order motor areas in the brain were significantly activated in synchrony with the wearer's voluntary motor intention.

These findings demonstrate that HAL® activates cortical regions associated with voluntary movement and suggest its potential to induce neuroplasticity in the brain. This provides scientific evidence supporting HAL®'s therapeutic mechanism, which promotes functional improvement and regeneration of the nervous and muscular systems.

[Prevention/Early detection, Diagnosis check] Super small vital sensor "Cyvis"

Cyvis M100: Approved as a medical device in Japan (Nov,2024)

Compact Holter electrocardiograph Medical vital sensor

· Long-term continuous

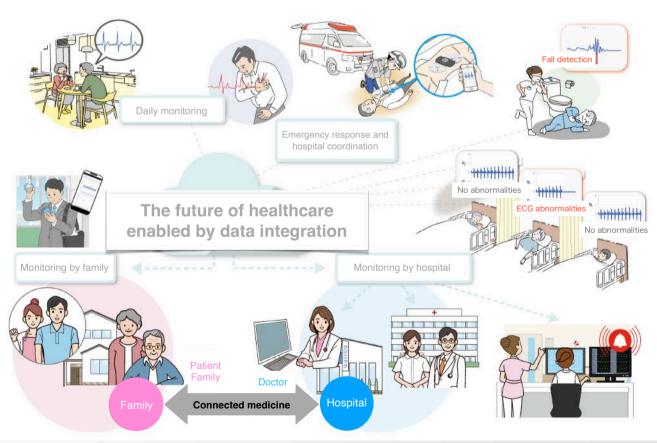
ECG measurement for approximately 10 days on a single charge

· No data extraction required

Data is automatically saved to a secure cloud via smartphones or tablets, enabling remote access to data

· electable electrodes

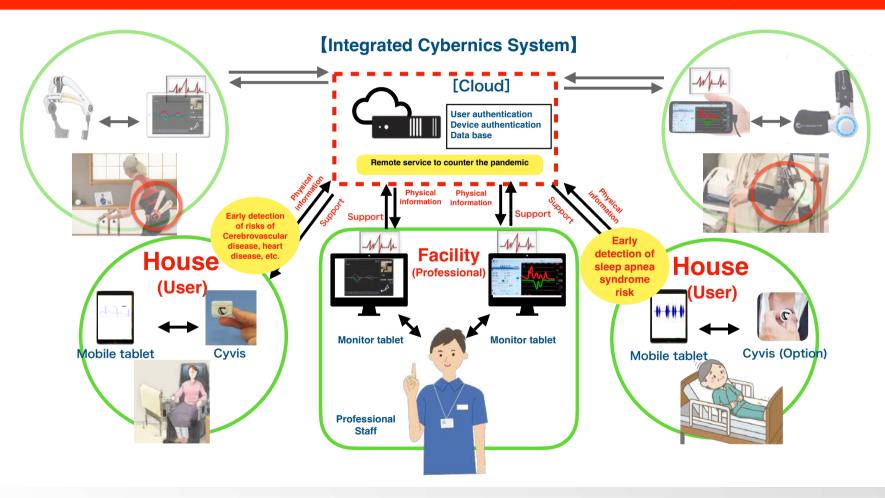
Original gel electrodes that can be easily applied Compatible with commercially available single-use FCG electrodes


· Simultaneous measurement of various data

- · Acceleration (body movement), angle
- · Skin surface temperature
- · Clothing temperature, humidity, and air pressure

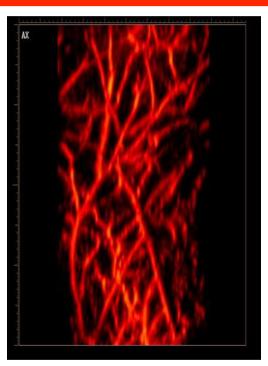
【Prevention/Early detection, Diagnosis check】 Super small vital sensor "Cyvis"

One device to accumulate, analyze and Al process various vital data


Application of Cyvis

Expands remote service that connects households to hospitals and facilities

[Prevention and early detection] Photoacoustic Imaging Device using LED light array



Contrast-free, non-invasive, real-time, high-resolution 3D imaging

LED array method (patent held by CYBERDYNE)

Adopted as the cover of BioPhotonics, a U.S. industry journal dealing with biophotonics

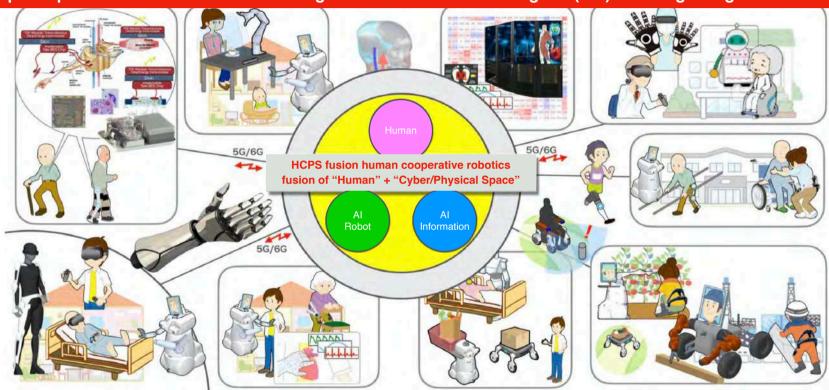
Peripheral vascular and blood conditions, etc.

Peripheral level examination, which could not be done with conventional imaging equipment, is now possible!

Example of application

- Routine examination and diagnosis of diabetic foot lesions
- Examination of vascular regeneration status by regenerative medicine
- Examination and diagnosis of cancer
- Examination of aging skin, etc.

Currently promoting medical device commercialization as a next-generation medical diagnostic imaging device


Research and Development

CYBERDYNE株式会社

HCPS fusion technology: Cybernics/Human cooperative robotics

As a commitment to science, technology and innovation, CYBERDYNE participated in the Cabinet Office Strategic Innovation Creation Program (SIP) to strengthen growth strategies

- 1) Application to various living spaces such as houses, facilities, workplaces, etc.
- 2) Utilization of HCPS fusion master/remote control technology (Cybernic master/remote technology) integrated with human information (physiology, body, behavioral cognition, psychology, etc.)
- 3) Non-invasive acquisition and utilization of human information through HCPS fusion human collaborative robotics
 - Linking with other related technologies to improve the independence and freedom of seniors and people with mobility problems

Source: Cabinet Strategic Innovation Program (SIP), Secretariat of Science, Technology and Innovation, Cabinet Office, Government of Japan, "Development of Fundamental Technologies and Rules for Expanding Human-Coordinated Robotics: Strategy and R&D Plan for Social Implementation," Pg 5.

Exhibition of "Future Me" at Expo 2025 Osaka, Kansai Demonstration at the Pasona Pavilion

- "Me with Restored Physical Function" (Wearable Cyborg Technology HAL®)
- "Me with an Expanded Living Environment" (Cybernics Master Remote Robot enabling remote interaction and operation in daily life)
- "Me Being Safely Monitored" (Compact vital sensors and peripheral vascular imaging technology that continuously monitor physiological and motor information in everyday settings)

Cybernics Master Remote Robot

Driving the Social Implementation of Physical AI through HCPS Integration

(サイバーダイン)はパソナグループと組んで、 人材派遣に活用できる次世代型ロボット開発に 人材派遣に活用できる次世代型ロボット開発に 人で忠実に再現する新型リモートロボを活用。 一人で複数のロボに同時に複数の場所で作業 させるなどして人手不足の解消や人材派遣コス 生かし、複数のロボに同時に複数の場所で作業 させるなどして人手不足の解消や人材派遣コス 上でもなどして人手不足の解消や人材派遣コス 上でもなどして人手不足の解消や人材派遣コス 上でもなどして人手不足の解消や人材派遣コス 上でもなどして人手不足の解消や人材派遣コス 上でもなどして人手不足の解消や人材派遣コス 上でもなどして人手不足の解消や人材派遣コス 上でもなどして人手不足の解消や人材派遣コス と行うる」と発 かり、複数のロボに同時に複数の場所で作業 をインターネット回線「 をインターネット回線「 をインターネット回線「 を人材派遣に活用する」 を人材派遣に活用する。 をした。 した。

1人で複数操作

人手不足解消・コスト削減

トをひとの動きに合いて忠実に動かせる。 ロボットには4本の関節を持ち、ものかんだり、手放したいきる。「4本指でもいったいきる。「4本指でもいったいきる。「4本指でもいっ指と同じ機能があって山海社長)といい、数妙な力加減と要な動きもこなす。」レーターは、ロボットには4本に入る空間を「拡張器」である空間を「拡張器」である空間を「拡張器」である空間を「拡張器」である空間を「拡張器」である。

などの施設を自動されていた自律走行しながらた自律走行しながら

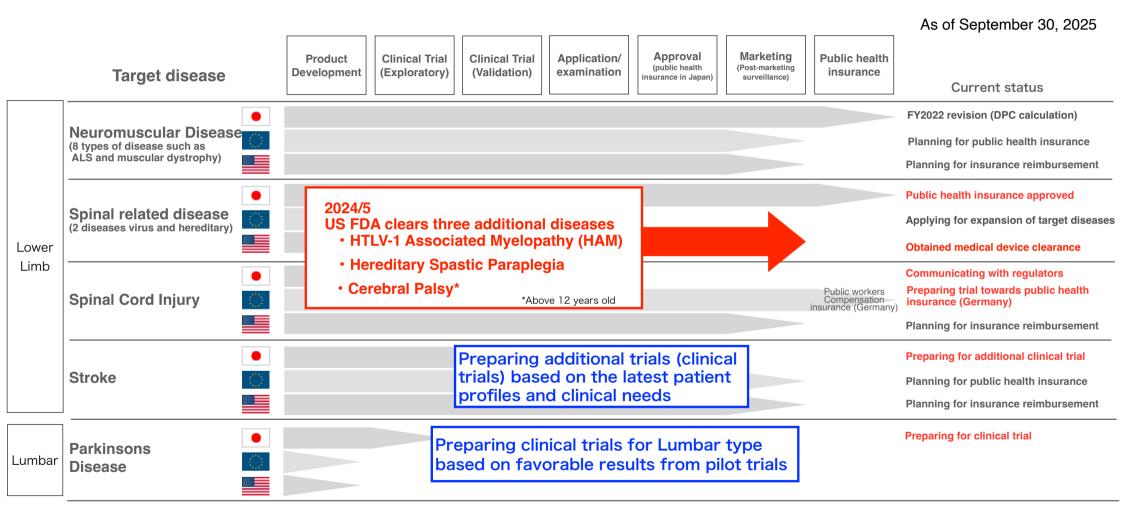
Feb 27, 2025 Nikkei

Clinical Development

CYBERDYNE, Inc. 22

Medical device approval for Medical HAL Lower Limb Type

Small size approved in Japan, the US, and Europe


As of September 30, 2025

		Stroke	Spinal Cord Injury	Neuromuscular Disease*	Other diseases	Small size
	Japan	(Preparing for additional trial)	(Communicating with regulators)	Approved	HTLV-1 Associated Myelopathy (HAM)Hereditary spastic paraplegia	Approved
	USA	Approved	Approved	Approved	Cerebral palsyHTLV-1 Associated Myelopathy (HAM)Hereditary spastic paraplegia	Approved
	Europe	Approved	Approved	Approved		Approved
EMEA	Türkiye	Approved	Approved	Approved		
	Saudi Arabia	Approved	Approved	Approved		
	Malaysia	Approved	Approved	Approved		
	Indonesia	Approved	Approved	Approved		
	Thailand	Approved	Approved	Approved		
APAC	Singapore	Approved	Approved	Approved		
	India	Approved	Approved	Approved		
	Taiwan	(application in progress)	Approved	(application in progress)		
	Australia	Approved	Approved	Approved		

^{*}Spinal muscular atrophy, spinal and bulbar muscular atrophy, amyotrophic lateral sclerosis, Charcot-Marie-Tooth disease, distal muscular dystrophy, inclusion body myositis, congenital myopathy, muscular dystrophy

Clinical Development Pipeline

Social implementation of Cybernics Treatment in Germany

Clinical trials to be conducted on the premise of German public medical insurance coverage

G-BA (German Federal Joint Committee) decides to conduct clinical trials under the premise of insurance coverage

G-BA approves Cybernics Treatment as the standard of care to be considered for spinal cord injury patients (in accordance with §137eSGB V of the Study Regulations)

G-BA itself decides to conduct a clinical trial (the clinical trial will be covered by public health insurance for Cybernics Treatment in advance).

The results of the clinical trial are expected to be included in the German public medical insurance system.

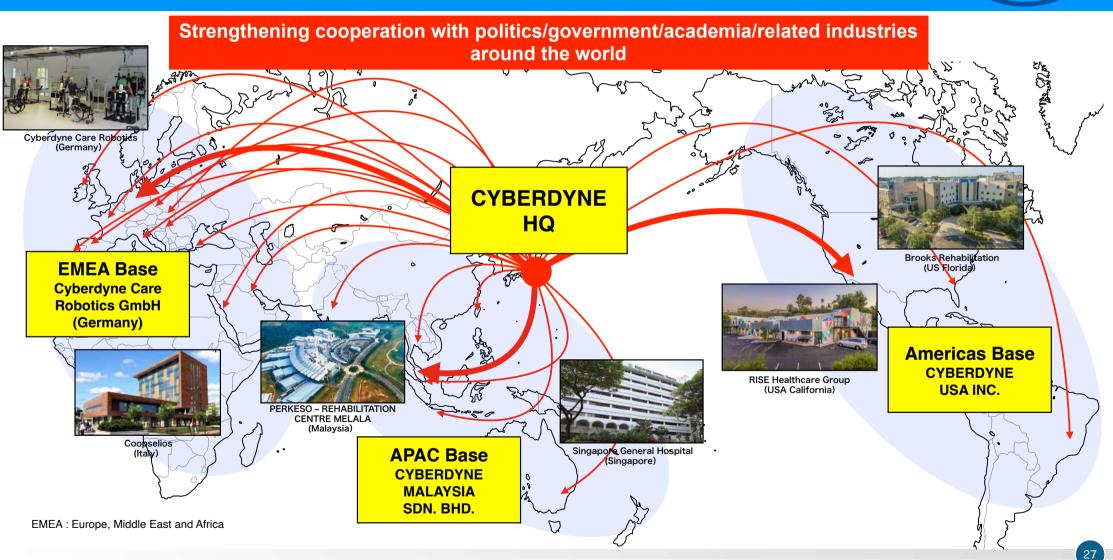
G-BA Preparing Clinical Trials (currently selecting clinical trial facilities)

2023/01 Protocol outline presented

2023/03 Expert hearing held

2023/09 Protocol guideline announced

2024/11 CRO selection completed


G-BA (Federal Joint Committee): Organization at the federal level that determines basic benefits, prices, standards, etc. for German insurance treatment. **§137e SGB V** (Trial Regulation): A system under which the G-BA conducts its own initiated clinical trials and makes final evaluations of promising treatments that could become the standard of care.

[Medical] Global Dissemination of Cybernics Treatment

CYBERDYNE, Inc. 26

CYBERDYNE

Strategy to promote Cybernics as a global platform

Social implementation of Cybernics Treatment (Malaysia)

The National Center for Neuro-Robotics and Cybernics, the largest medical complex in Southeast Asia

PERKESO National Neuro-Robotic and Cybernics Rehab. Centre

- ✓ Construction underway in Ipoh, Perak, Northern part of Malaysia (Scheduled by the end of 2024)
- √ First phase project
 - √ 15.6 Hectare (Approx. 3.4 baseball stadiums)
 - √ Gross floor area is approximately 86,400 square meters
- √ Capable of accommodating 700 patients at any given time

Construction completed by 2024

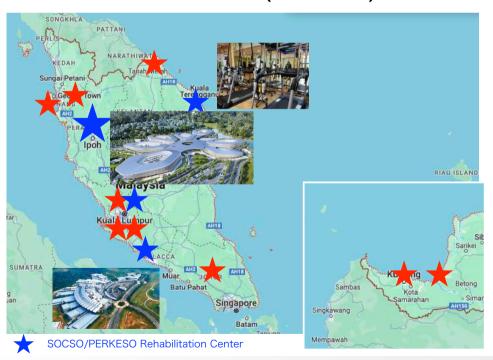
Maximum number of units to be installed at a single facility (65 units)

Scheduled to officially open in 2025

Strategic base for social implementation of Cybernics Industry, such as HAL, Cybernics Products and technologies of other companies that CYBERDYNE invests through C-Startup

https://www.perkeso.gov.my/images/kenyataan_media/2023/190203__LAWATAN_MENTERI_SUMBER_MANUSIA_KE_TAPAK_PUSAT_REHABILITAS_PERKESO_PERAK_pdf?
TSPD_101_R0=08e2dacd5fab2000f93a5b667765406ad4c598e4e5aedac205cdc286f8c106bc77d7648842ded7a008048fa483143000fbc3f707cd511bf1367c7352c9
10251d84d1723291 abc11 cb8adcffc6ab464046f84d40e56f52b87e7c10ac4d5baf7b

Social implementation of Cybernics Treatment (Malaysia)



Provides Cybernics Treatment free for patients due to Public Social Compensation Insurance

SOCSO/PERKESO (Malaysia Public Social Security Organization)

SOCSO has four functions: disability pension, survivor's pension, medical coverage and occupational injury coverage, and is compulsory for Malaysian and foreign workers in Malaysia to join the program. It provides medical compensation, disability compensation, funeral benefits, child support and nursing care benefits for illness or injury that occurs while commuting to and from work.

Facilities with HAL (14 facilities)

Socso urged to build three new rehabilitation centres in five years

Bernama 15/01/2024 16:00 MYT January 2024: The Minister of Human Resources requested the nationwide expansion of SOCSO (PERKESO) rehabilitation centers (three more locations, including lpho, within five years).

https://www.astroawani.com/berita-malaysia/socso-urged-build-three-new-rehabilitation-centres-five-years-454129

Global Expansion of Cybernics and Strengthening of International Collaboration (APAC)

Strategic Partnership Established to Promote Cybernics Medical and Healthcare Innovation in Japan and Taiwan

With Development Center for Biotechnology (DCB) and Fu Jen Catholic University

2025.3.4

(From left to right)
Fu Jen Catholic University Hospital
Prof. Dr. Horng-Huei Liou, Vice Superintendent

Development Center for Biotechnology Dr. Michael Huang, Vice President

Fu Jen Catholic University
Prof. Francis Yi-Chen Lan. President

CYBERDYNE Inc.

Dr. Yoshiyuki Sankai, President and CEO

Center for Cybernics Research Prof. Yoshihiro Kuroda, Director of Center

Global Expansion of Cybernics and Strengthening of International Collaboration (APAC)

Joint Promotion of Cybernics Medical and Healthcare Innovation with National Taiwan University

Signing of an International Memorandum of Understanding (MoU) 2025.6.18

Co-hosting of an International Symposium at NTU 2025.11.2

Opening remarks by President Wen-Chang Chen, NTU

Global Expansion of Cybernics and Strengthening of International Collaboration (EMEA)

HAL to be deployed through the Japan International Cooperation Agency (JICA) for Ukraine's reconstruction.

Nov 19, 2024 Nikkei

とされた

経細胞の

蔵コンパ

負傷した市民の身体

To be used for the treatment of people with disabilities caused by the war HAL series 46 units, etc. Order amount: Approximately 360 million yen

セルギー・コルスンスキー前駐日ウクライナ特命全権大使 🥸 @KorsunskySergiv

脊椎損傷者のための医療技術を数多く開発しているサイバーダイン社を訪問しま した。この会社は、多くのロボットのイノベーションの本拠地です。 この会社 の製品が、重病人のリハビリテーションに役立っていることに驚きました。

午後5:56・2023年4月24日・1.8万件の表示

る。ウク 24年3月 高める。

Disclaimer

This presentation contains forward-looking statements concerning CYBERDYNE, Inc. and its Group's future plans, strategies and performance. Forward-looking statements contained in this presentation are based on information currently available and on certain assumption redeemed rational at the time of creation of this presentation. As such, due to various risks and uncertainties, the statements and assumption does not guarantee future performance, may be considered differently from alternative perspectives and may differ from the actual result.

Further, this presentation contains statements and information regarding corporate entities other than those belonging to the CYBERDYNE group, which have been complied from various publicly- available sources. CYBERDYNE does not verify nor guarantees accuracy and appropriateness of those information.